

Univariate Statistics

Prof. Dr. Olaf Rank

Statistical Analysis

- Univariate Statistics
 - Hypothesis testing one variable at a time
 - Test of statistical significance
- <u>Bivariate Statistics:</u> Tests of hypotheses involving two variables.
- <u>Multivariate Statistics</u>: Statistical analysis involving three or more variables or sets of variables.

Hypothesis Testing

Hypothesis:

- Unproven proposition
- Supposition that tentatively explains certain facts or phenomena
- Assumption about nature of the world

Null hypothesis vs. Alternative hypothesis

- <u>Alternative hypothesis</u>
 - Statement that indicates the opposite of the null hypothesis
- Null hypothesis
 - Statement about the status quo
 - No difference

Hypothesis Testing and Statistical Significance

- <u>Statistical inference:</u> statements about population based on a sample
- Differences due to random sampling error vs. statistical significant results
- Results are statistically significant if it is unlikely that they have occurred by chance

Significance Levels and p-Values

Significance Level (Alpha):

- Critical probability in choosing between the null hypothesis and the alternative hypothesis
- Significance level selected is typically .05 or .01

<u>p-value:</u>

- Probability value, or the observed or computed significance level
- p-values are compared to significance levels to test hypotheses

Example

Customer satisfaction in a restaurant: owner wants to show, that actual satisfaction differs form 3 (= neither satisfied nor dissatisfied)

The null hypothesis that the mean is equal to 3.0:

$$H_{0}: \mu = 3.0$$

The alternative hypothesis that the mean is not equal to 3.0:

$$H_1: \mu \neq 3.0$$

 $\frac{N = 225}{X} = 3.78$ S = 1.5

A Sampling Distribution

Critical values of µ

Critical value - lower limit $= \mu - ZS_{\overline{X}}$ or $\mu - Z\frac{S}{\sqrt{n}}$ $= 3.0 - 1.96\left(\frac{1.5}{\sqrt{225}}\right) = 2.804$

Critical value - upper limit $= \mu + ZS_{\overline{X}}$ or $\mu + Z\frac{S}{\sqrt{n}}$

$$= 3.0 + 1.96 \left(\frac{1.5}{\sqrt{225}}\right) = 3.196$$

		Level of significance for one-tailed test						
	0.10	0.05	0.025	0.1	.005	.0005		
	Level of significance for two-tailed test							
t.f.	.20	.10	° °.05 °	.02	.01	.001		
1	3.078	6.314	12.706	31.821	63.657	635.619		
2	1.886	2.920	4.303	6.965	9.925	31.598		
3	1.638	2.353	3.182	4.541	5.841	12.941		
4	1.533	2.132	2.776	3.747	4.604	8.610		
5	1.476	2.015	2.571	3,365	4.032	6.859		
6	1.440	1.943	2.447	3.143	3.707	5.959		
7	1.415	1.895	2,365	2.998	3.499	5.405		
8	1.397	1,860	2.306	2.896	3.355	5.041		
9	1.383	1.833	2.262	2.821	3.250	4.781		
10	1.372	1.812	2.228	2.764	3.169	4.587		
11	1.363	1.796	2.201	2.718	3.106	4.437		
12	1.356	1.782	2.179	2,681	3.055	4.318		
13	1.350	1.771	2.160	2.650	3.012	4,221		
14	1.345	1.761	2.145	2.624	2.977	4.140		
15	1.341	1,753	2.131	2.602	2.947	4.073		
16	1.337	1.746	2.120	2.583	2.921	4.015		
17	1.333	1.740	2.110	2.567	2.898	3.965		
18	1.330	1.734	2,101	2.552	2.878	3.922		
19	1.328	1.729	2.093	2.539	2.861	2.883		
20	1.325	1.725	2.086	2.528	2.845	3.850		
21	1.323	1.721	2.080	2.518	2.831	3.819		
22	1.321	1.717	2.074	2.508	2.819	3.792		
23	1.319	1.714	2.069	2.500	2.807	3.767		
24	1.318	1.711	2.064	2,492	2.797	3.745		
25	1.316	1.708	2.060	2,485	2.787	3.725		
26	1.315	1.706	2.056	2,479	2.779	3.707		
27	1.314	1.703	2.052	2,473	2.771	3.690		
28	/ 1.313	1.701	2.048	2,467	2.763	3.674		
29	1.311	1,699	2.045	2,462	2.756	3.659		
30	1.310	1.697	2.042	2,457	2.750	3.646		
40	1.303	1.684	2.021	2.423	2.704	3.551		
60	1.296	1.671	2.000	2,390	2.660	3.460		
20	1.289	1.658	1,980	2,358	2.617	3.373		
100	1,282	1.645	1.960	2 326	2.576	3,291		

t-/z-Values

Region of Rejection

The mean does not equal to $3.0 \rightarrow$ rejection of the null hypothesis

Alternate Way of Testing the Hypothesis

Hypothesis Test: Z-Values

Type I and Type II Errors

Choosing Statistical Techniques

Choice of appropriate statistical techniques depends on:

- 1. Type of question to be answered
- 2. Number of variables
 - Univariate
 - Bivariate
 - Multivariate
- 3. Scale of measurement
- Parametric vs. nonparametric statistics

t-Distribution and Degrees of Freedom

t-Distribution:

- Symmetrical, bell-shaped distribution
- Mean of zero and a unit standard deviation
- Shape influenced by degrees of freedom

<u>Degrees of Freedom (d.f.):</u> the number of observations minus the number of constraints/assumptions

<u>t-Test</u>: A hypothesis test that uses the t-distribution. A univariate ttest is appropriate when the variable analyzed is interval or ratio.

t-Distribution

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Confidence Interval Estimate Using the t-distribution

$$\mu = \overline{X} \pm t_{c.l.} S_{\overline{X}}$$
Upper limit = $\overline{X} + t_{c.l.} \frac{S}{\sqrt{n}}$
Lower limit = $\overline{X} - t_{c.l.} \frac{S}{\sqrt{n}}$

 μ = population mean

X = sample mean

- $t_{c.l.}$ = critical value of t at a specified confidence level
- $S_{\overline{X}}$ = standard error of the mean
- S = sample standard deviation
- = sample size n

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Calculating a Confidence Interval Estimate using the t-Distribution

• Example: How long do MBA students remain on their first job?

$$\mu = \overline{X} \pm t_{cl} s_{\overline{x}}$$

$$\overline{X} = 3.7$$

$$S = 2.66$$

$$n = 17$$

upper limit = $3.7 + 2.12(2.66/\sqrt{17}) = 5.07$
lower limit = $3.7 - 2.12(2.66/\sqrt{17}) = 2.33$

• It can be concluded with 95 percent confidence that the population mean for the number of years spent on the first job by MBAs is between 5.07 and 2.33.

		Level o	f significance fo	or one-tailed te	st.			
	0.10	0.05	0.025	0.1	.005	.0005		
	Level of significance for two-tailed test							
d.l.	.20	.10	.05	.02	.01	.001		
1	3.078	6.314	12.706	31.821	63.657	635.619		
2	1.886	2.920	4.303	6.965	9.925	31.598		
3	1.638	2.353	3.182	4.541	5.841	12.941		
4	1.533	2.132	2.776	3.747	4.604	8.610		
5	1.476	2.015	2.571	3,365	4.032	6.859		
6	1.440	1.943	2.447	3.143	3.707	5.959		
7 .	1.415	1.895	2.365	2.998	3.499	5.405		
8	1.397	1.860	2.306	2.896	3.355	5.041		
9	1.383	1.833	2.262	2.821	3.250	4.781		
10	1.372	1.812	2.228	2.764	3.169	4.587		
11 .	1.363	1.796	2.201	2.718	3.106	4.437		
12	1.356	1.782	2.179	2.681	3.055	4.318		
13	1.350	1.771	2.160	2.650	3.012	4.221		
14	1.345	1.761	2.145	2.624	2.977	4.140		
15	1.341	1.753	2 131	2.602	2.947	4.073		
16	1.337	1.746	2.120	2,583	2.921	4.015		
17:400	1.333	1.740	2.110	2.567	2.898	3.965		
18	1.330	1.734	2,101	2.552	2.878	3.922		
19	1.328	1.729	2.093	2.539	2.861	2.883		
20	1.325	1.725	2.086	2.528	2.845	3.850		
21	1.323	1.721	2.080	2.518	2.831	3.819		
22	1.321	1.717	2.074	2.508	2.819	3.792		
23	1.319	1.714	2.069	2.500	2.807	3.767		
24	1.318	1.711	2.064	2,492	2.797	3.745		
25	1.316	1.708	2.060	2,485	2.787	3.725		
26	1.315	1.706	2.056	2,479	2.779	3.707		
27	1.314	1.703	2.052	2,473	2.771	3.690		
28	/ 1.313	1.701	2.048	2,467	2.763	3.674		
29	1.311	1,699	2.045	2,462	2.756	3.659		
30	1.310	1.697	2.042	2.457	2.750	3.646		
40	1.303	1.684	2.021	2,423	2.704	3.551		
60	1.296	1.671	2.000	2,390	2.660	3.460		
120	1.289	1.658	1,980	2.358	2.617	3.373		
1	4.464	A CAE	1 000	2 226	3 676	2 201		

t-/z-Values

Univariate Hypothesis Test Utilizing the t-Distribution

Production manager wants to show, that the average number of defective assemblies each day differs from last years average number of 20

$$H_0: \mu = 20$$

 $H_1: \mu \neq 20$

n = 25 days $\overline{X} = 22$ S = 5

Univariate Hypothesis Test Utilizing the t-Distribution

- The researcher desired a 95 % confidence, the significance level becomes .05.
- The researcher must then find the upper and lower limits of the confidence interval to determine the region of rejection. Thus, the value of t is needed. For 24 degrees of freedom (n-1, 25-1), the t-value is 2.064.

Lower limit:

$$\mu - t_{c.l.} S_{\overline{X}} = 20 - 2.064 \left(\frac{5}{\sqrt{25}}\right) = 20 - 2.064 = 17.936$$

Upper limit:

$$\mu + t_{c.l.} S_{\overline{X}} = 20 + 2.064 \left(\frac{5}{\sqrt{25}}\right) = 20 + 2.064 = 22.064$$

	Level of significance for one-tailed test						
	0.10	0.05	0.025	0.1	.005	.0005	
	Level of significance for two-tailed test						
d.f.	.20	.10	.05	.02	.01	.001	
1	3.078	6.314	12.706	31.821	63.657	636.619	
2	1.886	2.920	4.303	6.965	9.925	31.598	
3	1.638	2.353	3.182	4.541	5.841	12.941	
4	1.533	2.132	2.776	3.747	4.604	8.610	
5	1.476	2.015	2.571	3,365	4.032	6.859	
6	1.440	1.943	2.447	3.143	3.707	5.959	
7	1.415	1.895	2.365	2.998	3.499	5.405	
8	1.397	1.860	2.306	2.896	3.355	5.041	
9	1.383	1.833	2.262	2.821	3.250	4.781	
10	1,372	1.812	2.228	2.764	3.169	4.587	
11 .	1.363	1.796	2.201	2.718	3.106	4.437	
12	1.356	1.782	2.179	2,681	3.055	4.318	
13	1.350	1.771	2.160	2.650	3.012	4,221	
14	1.345	1.761	2.145	2.624	2.977	4.140	
15	1.341	1,753	2.131	2.602	2.947	4.073	
16	1.337	1.746	2.120	2,583	2.921	4.015	
17	1.333	1.740	2.110	2.567	2.898	3.965	
18	1.330	1.734	2,101	2.552	2.878	3.922	
19	1,328	1.729	2.093	2.539	2.861	2.883	
20	1.325	1.725	2.086	2.528	2.845	3.850	
21	1,323	1.721	2,080	2.518	2.831	3.819	
22	1.321	1.717	2.074	2.508	2.819	3.792	
23	1.319	1.714	2.069	2.500	2.807	3.767	
24	1.318	1.711	2.064	2,492	2.797	3.745	
25-0-2	1.316	1.708	2.060	2,485	2.787	3.725	
26	1.315	1.706	2.056	2.479	2.779	3.707	
27	1.314	1.703	2.052	2.473	2.771	3.690	
28	/ 1.313	1.701	2.048	2.467	2.763	3.674	
29	1.311	1,699	2.045	2,462	2.756	3.659	
30	1.310	1.697	2.042	2,457	2.750	3.646	
40	1.303	1.684	2.021	2.423	2.704	3.551	
60	1.296	1.671	2.000	2.390	2.660	3.460	
20	1.289	1.658	1.980	2,358	2.617	3.373	
<u>,</u> 200	1,282	1,645	1,960	2 326	2.576	3,291	

t-/z-Values

Univariate Hypothesis Test Utilizing the t-Distribution

Because

22 < 22.064

- Sample mean of is not included in the region of rejection.
- Consequence: Null Hypothesis cannot be rejected, manager's assumption seems not to be correct.
- → average number of defective assemblies each day does not differ significantly from last years average number of 20

Confidence Interval Estimate (t-distribution)

$$t_{obs} = \frac{\overline{X} - \mu}{S_{\overline{X}}} = \frac{22 - 20}{1}$$
$$= \frac{2}{1}$$
$$= 2$$

 $t_{crit} = 2.064$ with df = 25 - 1 = 24

Testing a Hypothesis about a Distribution

- <u>Chi-Square test</u>: Test for significance in the analysis of frequency distributions
- Compare observed frequencies with expected frequencies
- "Goodness of Fit"

Chi-Square Test

$$x^{2} = \sum \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

$$\chi^{2} = \frac{\Phi_{1} - E_{1}^{2}}{E_{1}} + \frac{\Phi_{2} - E_{2}^{2}}{E_{2}}$$

 x^2 = chi-square statistics O_i = observed frequency in the *i*th cell E_i = expected frequency on the *i*th cell

Example: Chi-Square Test

• Awareness of a brand of automobile tire

Awareness of Tire Manufacturer's Brand	Frequency	
Aware	60	
Unaware	40	
	100	

- H_0 : number of consumers aware of tire brand equals the number unaware of the brand; expected probability (aware or unaware) = .5
- H_1 : expected probability (aware or unaware) $\neq .5$

Univariate Hypothesis Test: Chi-square Example

$$\chi^2 = \frac{60 - 50^2}{50} + \frac{40 - 50^2}{50} = 4$$

d.f. = k - 1, with k = number of cells associated with column or row data

d.f. =
$$2 - 1 = 1$$

Critical chi²-value is 3.84 < 4

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Degrees of	AREA IN	I SHADED RIGH	Τ TAIL (α)
Freedom (d.f.)	.10	.05	.01
· · · · · · · · · · · · · · · · · · ·	2.706	3.841	6.635
Ζ	4.605	5,991	9.210
3	6.251	7.815	11.345
4	7.779	9.488	13.277
5	9.236	11.070	15.086
6	10.645	12.592	16.812
7	12.017	14.067	18.475
8	13.362	15.507	20.090
9	14.684	16.919	21.666
10	15.987	18.307	23.209
a na ana ang ang ang ang ang ang ang ang	17.275	19.675	24.725
12	18.549	21.026	26.217
-13	19.812	22.362	27.688
14	21.064	23.685	29.141
15	22.307	24.996	30.578
16	23.542	26.296	32.000
17	24.769	27.587	33.409
18	25.989	28.869	34.805
19	27.204	30.144	36.191
20	28.412	31,410	37.566
21	29.615	32.671	38.932
22	30.813	33.924	40.289
23	32.007	35.172	41.638
24	33.196	36.415	42.980
25	34.382	37.652	44.314
26	35.563	38.885	45.642
27	36.741	40.113	46.963
28	37.916	41.337	48.278
29	39.087	42.557	49.588
30	40.256	43.773	50.892

